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Multicore vs. manycore
• multicore	(Edison)	

‣ 5000	nodes	

‣ 12	physical	cores/CPU	

‣ 24	HW	threads/CPU	

‣ 2.4-3.2	GHz	

‣ 4	DP	ops/cycle	

‣ 30	MB	L3	cache	

‣ 64	GB/node 

‣ 100	GB/s	memory	
bandwidth

• manycore	(Cori-KNL)	

‣ 9600	nodes	

‣ 68	physical	cores/CPU	

‣ 272	HW	threads/CPU	

‣ 1.2-1.6	GHz	

‣ 2x8	DP	ops/cycle	

‣ no	L3	cache	

‣ 16	GB/node	(fast)  
96	GB/node	(slow)	

‣ 450	GB/s	memory	bandwidth	
(fast)



Recompile and go?
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• x86-64	compatible:	can	use	codes	for	older	architectures	or	recompile	

• self-hosted:	no	need	for	offloading

• median	speedup	vs.	Edison:	1.15x	

• median	speedup	vs.	Haswell:	0.70x



Why should I optimize my code?

• pros	

• get	more	for	your	bucks:	making	efficient	use	of	existing	manycore	HPC	
systems	

• fast	success	possible:	many	low	hanging	fruits	in	unoptimized	codes	

• investing	in	the	future:	heterogeneous	architectures	are	energy	efficient	
and	thus	will	stay	around	for	a	while	

• benefits	on	multicore:	optimizations	targeting	manycore	architectures	
mostly	improve	performance	on	multicore	systems	as	well	

• cons	

• effort:	many	most	beneficial	optimizations	require	significant	code	changes	

• investing	in	the	future:	what	if	I	bet	on	the	wrong	horse?
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Optimization targets

• single	node	performance	

• start	here:	for	representative	local	problem	size,	single	node	
performance	is	upper	bound	of	what	you	get	in	multi-node	

• many	optimization	opportunities,	fast	turnaround	times	

• many	profiling	tools	available	

• multi-node	performance	

• fewer	optimization	opportunities,	profiling/debugging	tedious	

• IO	performance	

• not	many	opportunities	for	improvement
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Where do I start?

• get	to	know	your	application:	don’t	assume	you	already	do!	

• determine	hotspots	

• manual	timers:	be	careful	with	thread	safety/sync	barriers	

• profiling	tools:	NERSC	offers	a	lot	

• CrayPat	(very	lightweight)	

• Advisor	(find	time-consuming	loops)	

• VTune	(can	do	a	lot	of	things	but	also	very	slow)	

• MAP	(comparably	lightweight)	

• found	hotspots,	now	what?
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http://www.nersc.gov/users/software/performance-and-debugging-tools/craypat/
http://www.nersc.gov/users/software/performance-and-debugging-tools/advisor/
http://www.nersc.gov/users/software/performance-and-debugging-tools/vtune/
http://www.nersc.gov/users/software/performance-and-debugging-tools/MAP/


What architectural feature shall I target?

• KNL	has	many	new	features	to	explore	

• many	threads	

• bigger	vector	units	

• complex	intrinsics	(ISA)	

• multiple	memory	tiers	

• understand	your	hotspots	

• compute	bound:	more	threads,	vectorization,	ISA	

• memory	BW	bound:	memory	tiers,	more	threads	

• memory	latency	bound:	more	threads,	vectorization
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Prerequisites - compile and run

• recompile	your	code	for	KNL:	code	for	older	CPUs	is	supported	but	
those	do	not	make	full	use	of	new	architecture	

• Cray	(wrappers):	  
module swap craype-haswell craype-mic-knl 

• Intel: -xmic-avx512 

• GNU:	-march=knl 

• use	proper	OpenMP	settings: 
export OMP_NUM_THREADS=64 
export OMP_PLACES=threads 
export OMP_PROC_BIND=spread	

• use	job-script-generator	on	my.nersc.gov	or	NERSC	website		

• node	configuration:	use	-C knl,quad,cache	as	a	start
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https://my.nersc.gov/script_generator.php
http://my.nersc.gov
http://www.nersc.gov/users/computational-systems/cori/running-jobs/general-running-jobs-recommendations/


Prerequisites - #FLOPS

• 																				:	number	of	floating	point	operations	

• manual	calculation:		

• float	addition	and	multiplication:	+1	

• complex	multiplication:	+6	(4	multiplications+2	additions)	

• etc.	

• measure	with	SDE: 
 
 
 
 

• using	SDE	is	more	precise,	because	it	accounts	for	masking
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#FLOPS

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/


Prerequisites - #BYTES
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• 																				:	number	of	bytes	transferred	from	main	memory	

• manual	calculation	(not	recommended,	but	good	check):		

• count	the	bytes	of	data	to	be	read	and	written	in	the	kernel	

• does	not	account	for	data	reuse	through	caching	

• measure	with	VTune: 
 
 
 
 
 

• precisely	obtain	uncore	counter	events

#BYTES

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/


What is limiting my performance?

• Roofline	performance	model		

• arithmetic	intensity 
 

• performance 
 

• plot	P	vs.	AI	with	architectural	roofline	R
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AI =
#FLOPS

#BYTES

P =
#FLOPS

time[s]

R(AI) = min(memory bw ·AI, peak flops)

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/


Example roofline
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Example roofline
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memory bandwidth bound



Example roofline

12

use MCDRAM



Example roofline
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compute bound
use MCDRAM



Example roofline
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use MCDRAM

utilize vectorization



Example roofline

12

(possibly) memory latency bound
use MCDRAM

utilize vectorization



Example roofline
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use MCDRAM

utilize vectorization

threading, vectorization



Example roofline
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use MCDRAM

utilize vectorization

threading, vectorization

improve AI



How to improve AI?

• definition	of	arithmetic	intensity 
 
 

• two	possibilities	

• number	of	flops	⬆ number	of	bytes	➡  

(not	possible/easy,	choice	of	algorithm	determines	flops)

• number	of	flops ➡ number	of	bytes ⬇ 

• reality:	tradeoff	between	both
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AI =
#FLOPS

#BYTES



Create more work/thread

• loop/kernel	fusion:	improves	cache	re-use	and	reduce	overhead 
 
 
 
 
 

• collapse	nested	loops: 
 

• rearrange	data	structures:	move	OpenMP	out	(coarse	grain)
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Loop transformations I

• loop	tiling:	improves	cache	re-use	and	can	significantly	improve	performance
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Loop transformations I

• loop	tiling:	improves	cache	re-use	and	can	significantly	improve	performance

• especially	relevant	on	KNL	because	of	missing	L3

• blocking	to	shared	L2	(512KiB)	usually	good

• was	my	transformation	successful?	check	L1,	L2	miss	rates,	e.g.	in	VTune

15



Loop transformations II

• short	loop	unrolling:	helps	the	compiler	vectorizing	the	right	loops 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Loop transformations II

• short	loop	unrolling:	helps	the	compiler	vectorizing	the	right	loops 
 
 
 
 
 
 

• unrolling	pragmas	are	helpful	too

• check	compiler	optimization	reports

• use	Intel	Advisor
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Data alignment

• align	(and	pad)	data	to	64bit	words	to	improve	prefetching	

• can	be	done	easily	in	major	programming	languages	

• FORTRAN:	-align array64byte  
(ifort,	gfortran	does	it	automagically) 

• C/C++:	aligned_alloc(64, <size>),  
__attribute__ ((aligned(64))), __declspec(align(64))	

• C++	trick:	overload	new operator	

• advanced:	manually	pad	data	if	array	extents	are	power	of	2	to	
minimize	cache	associativity	conflicts

17



Make use of ISA

• help	the	compiler	to	generate	efficient	intrinsics
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runtime example for app with kernel: 1.2 sec



Make use of ISA

• help	the	compiler	to	generate	efficient	intrinsics
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runtime example for app with kernel: 1.2 sec

if condition inside loop



Make use of ISA

• help	the	compiler	to	generate	efficient	intrinsics
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runtime example for app with kernel: 0.8 sec

1.5x speedup



Reduced precision math

• transcendental	functions,	square	roots,	etc.	are	expensive	

• use	-fp-model fast=2 -no-prec-div	during	compilation	

• replace	divisions	by	constants	with	multiplications	with	inverse 
 
 

• do	not	expect	too	much:	benefits	usually	only	visible	in	heavily	
compute-bound	code	sections	

• reduced	precision	might	not	always	be	acceptable
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Benefits of AVX-512
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• median	speedup:	1.2x	

• benefits	can	be	larger	than	2x	 
(probably	more	efficient	prefetching)	

• automatically	enabled	when	compiling	for	KNL	architecture



Use MCDRAM

• always	use	16GiB	on-package	memory	(MCDRAM)  
 
 
 
 
 
 

• cache	works	well:	request	with	-C knl,cache 

• code	fits	into	16GiB:	request	-C knl,flat	and	  
prepend	executable	with	numactl -m 1
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A note on heap allocation

• KNL	memory	allocation	is	comparably	slow	

• avoid	allocating	and	de-allocating	memory	frequently	

• remove	allocations/deallocations	in	loop	bodies	or	functions	which	are	called	
many	times	

• too	involved?	pool	allocator	libraries	(e.g.	Intel	TBB	scalable	memory	pools)	

• pros:	

• overloads	new/malloc,	no/minimal	source	code	changes	necessary	

• can	give	significant	performance	boost	for	certain	codes	

• take	care	of	thread-safety	

• cons:	

• memory	footprint	needs	to	be	known/computed	in	advance	

• code	might	become	less	portable
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https://software.intel.com/en-us/node/506255


Multi-node optimizations

• single	KNL	thread	cannot	saturate	Aries	injection	rate 
 
 
 
 
 
 
 

• use	thread-level	communication	or	multiple	MPI	ranks	per	node	

• recommended:	>4	ranks	per	node	

• dedicate	cores	to	OS:	-S <ncores>	in	sbatch	(ncores=2	good	choice)
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Hugepages, DMAPP and hardware AMO

• hugepages	can	reduce	Aries	TLB	misses	

• load	corresponding	module	at	compile	and	runtime 
 

• can	use	different	modules	at	compile	and	runtime	

• MPI-collective-heavy	codes:	enable	DMAPP	(add	-ldmapp)  
export MPICH_RMA_OVER_DMAPP=1 
export MPICH_USE_DMAPP_COLL=1 
export MPICH_NETWORK_BUFFER_COLL_OPT=1 

• enable	hardware	AMO	for	MPI-3	RMA	atomics 
export MPICH_RMA_USE_NETWORK_AMO=1
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Some notes on IO
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Single	Core	I/O	Performance	on	Cori
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Use multiple processes

• use	more	processes	(e.g.	with	MPIIO)	

• unfortunately,	no	good	threaded	IO	solutions	available	yet	

• always:	pool	(write	big	chunks),	reduce	file	operations	(open,	close)	

• large	files:	burst	buffer
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http://www.nersc.gov/users/computational-systems/cori/burst-buffer/


Does it help?
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• median	speedup	vs.	Edison:	1.15x	

• median	speedup	vs.	Haswell:	0.70x



Does it help?
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• median	speedup	vs.	Edison:	1.8x	

• median	speedup	vs.	Haswell:	1.0x



Summary

• single	node	performance	(go	for	that	one	first)	

• loop	fusion	and	tiling	

• ensure	good	vectorization	

• use	MCDRAM	

• multi-node	performance	

• hugepages	

• DMAPP	

• IO	performance	

• use	multiple	nodes,	pool	IO,	reduce	file	operations	to	minimum
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NERSC training material

• running	jobs	

• process/thread	binding	

• code	profiling	and	tools	

• measuring	arithmetic	intensity	(AI)	

• improving	OpenMP	scaling	

• vectorization	help	

• how	to	use	MCDRAM	

• NESAP	case	studies
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http://www.nersc.gov/users/computational-systems/cori/running-jobs/
https://www.nersc.gov/users/software/programming-models/openmp/process-and-thread-affinity/
http://www.nersc.gov/users/computational-systems/cori/application-porting-and-performance/profiling/
http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/
http://www.nersc.gov/users/computational-systems/cori/application-porting-and-performance/improving-openmp-scaling/
http://www.nersc.gov/users/computational-systems/cori/application-porting-and-performance/vectorization/
http://www.nersc.gov/users/computational-systems/cori/application-porting-and-performance/using-on-package-memory/
http://www.nersc.gov/users/computational-systems/cori/application-porting-and-performance/application-case-studies/


Thank you
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